Negative co-operativity in glutamate dehydrogenase. Involvement of the 2-position in glutamate in the induction of conformational changes.

نویسندگان

  • E T Bell
  • C LiMuti
  • C L Renz
  • J E Bell
چکیده

The 2-position substituent on substrates or substrate analogues for glutamate dehydrogenase is shown to be intimately involved in the induction of conformational changes between subunits in the hexamer by coenzyme. These conformational changes are associated with the negative co-operativity exhibited by this enzyme. 2-Oxoglutarate and L-2-hydroxyglutarate induce indications of co-operativity similar to those induced by the substrate of oxidative deamination, glutamate, in kinetic studies. Glutarate (2-position CH2) does not. A comparison of the effects of L-2-hydroxyglutarate and D-2-hydroxyglutarate or D-glutamate indicates that the 2-position substituent must be in the L-configuration for these conformational changes to be triggered. In addition, glutarate and L-glutamate in ternary enzyme-NAD(P)H-substrate complexes induce very different coenzyme fluorescence properties, showing that glutamate induces a different conformation of the enzyme-coenzyme complex from that induced by glutarate. Although glutamate and glutarate both tighten the binding of reduced coenzyme to the active site, the effect is much greater with glutamate, and the binding is described by two dissociation constants when glutamate is present. The data suggest that the two carboxy groups on the substrate are required to allow synergistic binding of coenzyme and substrate to the active site, but that interactions between the 2-position on the substrate and the enzyme trigger the conformational changes that result in subunit-subunit interactions and in the catalytic co-operativity exhibited by this enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Parathion Toxin on Glutamate Dehydrogenase Enzyme Activity and Diabetes Induction

Introduction: The main propose of this study was to determine the effect of parathion on activity of glutamate dehydrogenase (GDH) as a key enzyme in second phase secretion of insulin and to determine serum glucose levels in rats. Methods: To conduct the study, 35 rats were randomly divided into five groups (n=7). The serum glucose level of each group was measured and the total average was ca...

متن کامل

Evaluation of Glutamate Dehydrogenase Activity and Insulin Secretion in Mice Exposed to Dexamethasone

Background and Aims: Diabetes is one of the most important endocrine disrupters and is associated with various hormones, including those that can lead to diabetes. Glucocorticoid use may lead to insulin resistance. Dexamethasone is one of these glucocorticoid compounds. Glutamate dehydrogenase plays a key role in the production of glutamate in the secretion of insulin. Based on these hormonal i...

متن کامل

Hepatic Glutamate Dehydrogenase Activity and the Presence of Ammonia and Urea in the Circulatory Fluid of Channa Gachua in Water-Restricted Condition

Ammonia is the chief excretory product in fishes. However, non-availability of enough of water in the habitat, may lead to the formation of urea, in fishes. In the present study, the possible role of urea formation to avoid the toxicity of ammonia under water-restricted condition was tested in Channa gachua. Circulatory urea and ammonia were estimated in the blood of the fishes and glu...

متن کامل

Hepatic Glutamate Dehydrogenase Activity and the Presence of Ammonia and Urea in the Circulatory Fluid of Channa Gachua in Water-Restricted Condition

Ammonia is the chief excretory product in fishes. However, non-availability of enough of water in the habitat, may lead to the formation of urea, in fishes. In the present study, the possible role of urea formation to avoid the toxicity of ammonia under water-restricted condition was tested in Channa gachua. Circulatory urea and ammonia were estimated in the blood of the fishes and glu...

متن کامل

The effect of coenzyme Q10 on oxidative stress parameters and testicular tissue damage in rats following monosodium glutamate induced excitatory intoxication

Background: Monosodium glutamate (MSG) is known as a food flavor enhancer that can adversely affect the male reproductive system. The present study was investigated the protective effect of coenzyme Q10 (Co-Q10) against MSG-induced oxidative stress and histopathological changes in rat testicular tissue. Materials and methods: In this experimental study, 40 adult male Wistar rats were randomly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 225 1  شماره 

صفحات  -

تاریخ انتشار 1985